

CLEAN ENERGY IS JUST OVER THE HORIZON

Offshore Wind & Transmission Networks in Southern New England

New England Roundtable Friday December 9, 2011

Bill Moore CEO Deepwater Wind

- Recent trends in OSW technology and economics
- Deepwater Wind
- Importance of scale and innovative transmission solutions for competitive economics

Larger-Capacity Turbines

Increases in turbine nameplate capacity reduces installation costs on a \$ / MW basis

DEEPWATERWIND[®]

Growth in European Project Sizes

Today's offshore wind projects are much larger – both in number of turbines and in total capacity – than those of just a few years ago

Future Projects will be even Larger

Foundations in deeper waters allow projects to be built costeffectively on a gigawatt scale

Offshore UK wind farm zones

Economies of Scale for Offshore Wind

Improved Equipment Pricing

• Larger orders of turbines, foundations and cable yield better unit pricing

Economies in Operations & Maintenance

• Larger projects will incur roughly the same fixed O&M costs, which can spread such cost over greater capacity

Reduced Logistics and Installation Costs

• Larger projects can justify the fixed costs of local fabrication, yielding much lower transportation costs.

Over the horizon wind

• **Reduced visibility.** Locate 13-20+ miles offshore to avoid controversy.

- **Proven technology.** Use jacket foundations to build in deep water.
- Stronger wind resource. Deep-water sites are more energetic.
- Economies of scale. Larger projects with larger turbines will have lower unit costs..
- Regional Energy Centers. Supply clean power to entire regions, not just individual states, with innovative transmission solutions.

Siemens 6MW x 154m dd for Block Island

- Siemens will supply the Block Island Wind Farm with its latest purposebuilt offshore turbine
- 6 MW (67% larger than 3.6 MW) + 154m rotor (44% larger than 107m)
- First deployment in the US and only the second in the world
- Higher output means lower unit cost of energy – fewer turbines installed for the same power output
- Direct drive = 50% fewer rotating parts = lower maintenance costs + greater reliability

Transmission must be Designed to meet Market Need

- Three types of market needs:
 - 1. Intermittency Balancing - providing access to addition resources to firm wind power
 - 2. Multi-Market Distribution providing multiple markets with access to a utility scale wind farm
 - **3. Cost Effective Delivery** - minimizing transmission cost
- Deepwater's Block Island Transmission System provides balancing for our Block Island Wind Farm:
 - Exports power to mainland when wind farm produces more than Block Island needs
 - Imports power from mainland when wind farm (rarely) produces less than Block Island needs

Offshore Wind is Important for New England

Offshore wind is the renewable resource closest to the region's population and electricity demand centers.

The south of New England has **more population and generation** than the north

Southern New England has **more aggressive RPS targets** than Northern New England.

DEEPWATERWIND[®]

DEEPWATERWIND

© Deepwater Wind Holdings, LLC

Why networks?

Reach multiple energy markets at lower unit cost

- Scale Drives Costs
 - Build at 1GW size → lower \$/MWH
- Regional Procurement
 - Multiple states each receive smaller, cheaper allotment of much larger, more efficient "regional energy center"

Multiple grid interconnect points in adjacent RTOs

- Improve grid reliability
- Exploit price arbitrage between markets
- Reduce single-point interconnection risks

Conclusions

Commercial Realities

• Offshore wind will succeed in NE only with lower pricing

Dominance of Scale Economies

Technical change in design of WTGs and HVDC systems
Clear cost advantage for larger scale OSW projects

The Missing Link

Innovative transmission systems → GW-scale projects

Bill Moore BMoore@DWWind.com

PROPRIETARY AND CONFIDENTIAL

This presentation was given at the 12.9.2011 New England Electricity Restructuring Roundtable, "<u>Renewable Energy-Related Transmission</u> <u>for New Englanders: by Land and by Sea</u>" convened and moderated by <u>Raab Associates, Ltd</u>.

RAAB ASSOCIATES,LTD.

Facilitation ▲ Mediation ▲ Training Specializing in Energy & Environmental Issues

www.raabassociates.org